Random Walk on the Bethe Lattice and Hyperbolic Brownian Motion

نویسندگان

  • Cécile Monthus
  • Christophe Texier
چکیده

We give the exact solution to the problem of a random walk on the Bethe lattice through a mapping on an asymmetric random walk on the half-line. We also study the continuous limit of this model, and discuss in detail the relation between the random walk on the Bethe lattice and Brownian motion on a space of constant negative curvature. PACS : 05.40.+j ; 05.50.+q Electronic addresses : [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brownian Intersections, Cover Times and Thick Points via Trees

There is a close connection between intersections of Brownian motion paths and percolation on trees. Recently, ideas from probability on trees were an important component of the multifractal analysis of Brownian occupation measure, in joint work with A. Dembo, J. Rosen and O. Zeitouni. As a consequence, we proved two conjectures about simple random walk in two dimensions: The first, due to Erdő...

متن کامل

Homogenization of Random Walk in Asymmetric Random Environment

In this paper, the author investigates the scaling limit of a partial difference equation on the d dimensional integer lattice Zd, corresponding to a translation invariant random walk perturbed by a random vector field. In the case when the translation invariant walk scales to a Cauchy process he proves convergence to an effective equation on Rd. The effective equation corresponds to a Cauchy p...

متن کامل

Random Walks in Cones

We study the asymptotic behaviour of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of...

متن کامل

Critical Behaviour of Self-avoiding Walk in Five or More Dimensions

We use the lace expansion to prove that in five or more dimensions the standard self-avoiding walk on the hypercubic (integer) lattice behaves in many respects like the simple random walk. In particular, it is shown that the leading asymptotic behaviour of the number of «-step self-avoiding walks is purely exponential, that the mean square displacement is asymptotically linear in the number of ...

متن کامل

Strong Approximation of Brownian Motion

Simple random walk and Brownian motion are two strongly interconnected mathematical concepts. They are widely involved in not only pure math, but also in many other scientific fields. In this paper I will first introduce and define some basic concepts of discrete-time random walk. Then I will construct Brownian Motion with some basic properties, and use a method called the strong approximation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996